Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.548
Filtrar
1.
Retrovirology ; 21(1): 6, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580979

RESUMO

Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/fisiologia , Latência Viral , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Linfócitos T CD4-Positivos , Provírus/metabolismo , Ativação Viral
2.
Commun Biol ; 7(1): 344, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509308

RESUMO

Determinants of HIV-1 latency establishment are yet to be elucidated. HIV reservoir comprises a rare fraction of infected cells that can survive host and virus-mediated killing. In vitro reporter models so far offered a feasible means to inspect this population, but with limited capabilities to dissect provirus silencing dynamics. Here, we describe a new HIV reporter model, HIV-Timer of cell kinetics and activity (HIV-Tocky) with dual fluorescence spontaneous shifting to reveal provirus silencing and reactivation dynamics. This unique feature allows, for the first time, identifying two latent populations: a directly latent, and a recently silenced subset, with the latter having integration features suggestive of stable latency. Our proposed model can help address the heterogeneous nature of HIV reservoirs and offers new possibilities for evaluating eradication strategies.


Assuntos
Infecções por HIV , Provírus , Humanos , Provírus/genética , Latência Viral/genética , Infecções por HIV/genética
3.
PLoS Pathog ; 20(3): e1011716, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427693

RESUMO

A typical HTLV-1-infected individual carries >104 different HTLV-1-infected T cell clones, each with a single-copy provirus integrated in a unique genomic site. We previously showed that the HTLV-1 provirus causes aberrant transcription in the flanking host genome and, by binding the chromatin architectural protein CTCF, forms abnormal chromatin loops with the host genome. However, it remained unknown whether these effects were exerted simply by the presence of the provirus or were induced by its transcription. To answer this question, we sorted HTLV-1-infected T-cell clones into cells positive or negative for proviral plus-strand expression, and then quantified host and provirus transcription using RNA-seq, and chromatin looping using quantitative chromosome conformation capture (q4C), in each cell population. We found that proviral plus-strand transcription induces aberrant transcription and splicing in the flanking genome but suppresses aberrant chromatin loop formation with the nearby host chromatin. Reducing provirus-induced host transcription with an inhibitor of transcriptional elongation allows recovery of chromatin loops in the plus-strand-expressing population. We conclude that aberrant host transcription induced by proviral expression causes temporary, reversible disruption of chromatin looping in the vicinity of the provirus.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Cromatina/genética , Cromatina/metabolismo , Provírus/genética , Linfócitos T
4.
PLoS One ; 19(3): e0298542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457474

RESUMO

Drug-based antiretroviral therapies (ART) efficiently suppress HIV replication in humans, but the virus persists as integrated proviral reservoirs in small numbers of cells. Importantly, ART cannot eliminate HIV from an infected individual, since it does not target the integrated provirus. Therefore, genome editing-based strategies that can inactivate or excise HIV genomes would provide the technology for novel curative therapies. In fact, the HIV-1 LTR-specific designer-recombinase Brec1 has been shown to remove integrated proviruses from infected cells and is highly efficacious on clinical HIV-1 isolates in vitro and in vivo, suggesting that Brec1 has the potential for clinical development of advanced HIV-1 eradication strategies in people living with HIV. In line with the preparation of a first-in-human advanced therapy medicinal product gene therapy trial, we here present an extensive preclinical evaluation of Brec1 and lentiviral vectors expressing the Brec1 transgene. This included detailed functional analysis of potential genomic off-target sites, assessing vector safety by investigating vector copy number (VCN) and the risk for potential vector-related insertional mutagenesis, as well as analyzing the potential of Brec1 to trigger an undesired strong T cell immune response. In conclusion, the antiviral designer-recombinase Brec1 is shown to lack any detectable cytopathic, genotoxic or T cell-related immunogenic effects, thereby meeting an important precondition for clinical application of the therapeutic lentiviral vector LV-Brec1 in novel HIV-1 curative strategies.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Recombinases/metabolismo , HIV-1/fisiologia , Provírus/genética , Repetição Terminal Longa de HIV/genética , Infecções por HIV/terapia , Vetores Genéticos/genética
5.
Curr Opin HIV AIDS ; 19(3): 110-115, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457193

RESUMO

PURPOSE OF REVIEW: Elite controllers (ECs) and Posttreatment controllers (PTCs) represent a small subset of individuals who are capable of maintaining drug-free control of HIV plasma viral loads despite the persistence of a replication-competent viral reservoir. This review aims to curate recent experimental studies evaluating viral reservoirs that distinguish EC/PTC and may contribute to their ability to maintain undetectable viral loads in the absence of antiretroviral therapy. RECENT FINDINGS: Recent studies on ECs have demonstrated that integration sites of intact proviruses in EC/PTC are markedly biased towards heterochromatin regions; in contrast, intact proviruses in accessible and permissive chromatin were profoundly underrepresented. Of note, no such biases were noted when CD4 + T cells from EC were infected directly ex vivo, suggesting that the viral reservoir profile in EC is not related to altered integration site preferences during acute infection, but instead represents the result of immune-mediated selection mechanisms that can eliminate proviruses in transcriptionally-active euchromatin regions while promoting preferential persistence of intact proviruses in nonpermissive genome regions. Proviral transcription in such "blocked and locked" regions may be restricted through epigenetic mechanisms, protecting them from immune-recognition but presumably limiting their ability to drive viral rebound. While the exact immune mechanisms driving this selection process remain undefined, recent single-cell analytic approaches support the hypothesis that HIV reservoir cells are subject to immune selection pressure by host factors. SUMMARY: A "blocked and locked" viral reservoir profile may constitute a structural virological correlate of a functional cure of HIV-1 infection. Further research into the immunological mechanism promoting HIV-1 reservoir selection and evolution in EC/PTC is warranted and could inform foreseeable cure strategies.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Provírus/genética , Replicação Viral , Linfócitos T CD4-Positivos , Integração Viral , Carga Viral , Latência Viral
6.
PLoS Biol ; 22(3): e3002529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442090

RESUMO

At the core of organelle functions lies their ability and need to form dynamic organelle-organelle networks that drive intracellular communication and coordination of cellular pathways. These networks are facilitated by membrane contact sites (MCSs) that promote both intra-organelle and inter-organelle communication. Given their multiple functions, MCSs and the proteins that form them are commonly co-opted by viruses during infection to promote viral replication. This Essay discusses mechanisms acquired by diverse human viruses to regulate MCS functions in either proviral processes or host defense. It also examines techniques used for examining MCSs in the context of viral infections.


Assuntos
Membranas Mitocondriais , Provírus , Humanos , Replicação Viral , Organelas
7.
Front Cell Infect Microbiol ; 14: 1349046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456081

RESUMO

Endogenous retroviruses (ERVs) originate from ancestral germline infections caused by exogenous retroviruses. Throughout evolution, they have become fixed within the genome of the animals into which they were integrated. As ERV elements coevolve with the host, they are normally epigenetically silenced and can become upregulated in a series of physiological and pathological processes. Generally, a detailed ERV profile in the host genome is critical for understanding the evolutionary history and functional performance of the host genome. We previously characterized and cataloged all the ERV-K subtype HML-8 loci in the human genome; however, this has not been done for the chimpanzee, the nearest living relative of humans. In this study, we aimed to catalog and characterize the integration of HML-8 in the chimpanzee genome and compare it with the integration of HML-8 in the human genome. We analyzed the integration of HML-8 and found that HML-8 pervasively invaded the chimpanzee genome. A total of 76 proviral elements were characterized on 23/24 chromosomes, including detailed elements distribution, structure, phylogeny, integration time, and their potential to regulate adjacent genes. The incomplete structure of HML-8 proviral LTRs will undoubtedly affect their activity. Moreover, the results indicated that HML-8 integration occurred before the divergence between humans and chimpanzees. Furthermore, chimpanzees include more HML-8 proviral elements (76 vs. 40) and fewer solo long terminal repeats (LTR) (0 vs. 5) than humans. These results suggested that chimpanzee genome activity is less than the human genome and that humans may have a better ability to shape and screen integrated proviral elements. Our work is informative in both an evolutionary and a functional context for ERVs.


Assuntos
Retrovirus Endógenos , Animais , Humanos , Retrovirus Endógenos/genética , Pan troglodytes/genética , Provírus/genética , Genoma Humano , Genômica
8.
Curr Opin HIV AIDS ; 19(3): 116-123, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547340

RESUMO

PURPOSE OF REVIEW: To underline the complexity and the heterogeneity of the HIV reservoir. RECENT FINDINGS: While lymphoid tissues (spleen, lymph nodes, gut-associated lymphoid tissue) harbor specific subsets of specialized CD4 +  T cells enriched in HIV-infected cells, non-CD4 +  T cell reservoirs such as tissue-resident macrophages and dendritic cells have also been implicated to contribute to viral persistence. Moreover, studies have applied highly sensitive tools to detect transcriptional activity within HIV-infected cells during prolonged ART and revealed a broader spectrum of transcriptional activity for proviruses than previously thought. Finally, while a combination of factors might be involved in the regulation of HIV persistence within different tissues and remains to be fully elucidated, recent results from autopsy samples of HIV-infected ART suppressed individuals indicate extensive clonality of HIV reservoirs in multiple tissues and suggest that the recirculation of HIV-infected cells and their local expansions in tissues may also contribute to the complexity of the HIV reservoirs in humans. SUMMARY: HIV persistence in blood and multiple tissues despite long-standing and potent therapy is one of the major barriers to a cure. Given that the HIV reservoir is established early and is highly complex based on its composition, viral diversity, tissue distribution, transcriptional activity, replication competence, migration dynamics and proliferative potential across the human body and possible compartmentalization in specific tissues, combinatorial therapeutic approaches are needed that may synergize to target multiple viral reservoirs to achieve a cure for HIV infection.


Assuntos
Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Linfócitos T CD4-Positivos , Provírus , Latência Viral , Carga Viral
9.
Curr Opin HIV AIDS ; 19(3): 95-101, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457209

RESUMO

PURPOSE OF REVIEW: Currently, HIV-infected patients are treated with antiretroviral therapy. However, when the treatment is interrupted, viral rebound occurs from latently infected cells. Therefore, scientists aim to develop an HIV-1 cure which eradicates or permanently silences the latent reservoir. RECENT FINDINGS: Previously, scientists focused on the shock-and-kill cure strategy, which aims to eradicate the latent reservoir using latency-reactivating agents. Limited success shifts the interest towards the block-and-lock cure approach, which aims to achieve a functional cure by "blocking" HIV-1 transcription and "locking" the provirus in a deep latent state, resistant to treatment-interruption. In this strategy, latency promoting agents are used to induce transcriptional silencing and alter the epigenetics environment at the HIV promotor. SUMMARY: For the block-and-lock cure strategy to succeed more investigation into the transcriptional and epigenetic regulation of HIV-1 gene expression is necessary to design optimal latency-promoting agents. In this review, we will discuss the latency promoting agents that have been described in literature during the past 2 years (2022-2023).


Assuntos
Infecções por HIV , Ativação Viral , Humanos , Ativação Viral/genética , Latência Viral/genética , Epigênese Genética , Provírus/genética , Linfócitos T CD4-Positivos
10.
Curr Opin HIV AIDS ; 19(3): 124-132, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502547

RESUMO

PURPOSE OF REVIEW: Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and reignite viral replication if therapy is interrupted. Persistence of the viral reservoir in people with HIV-1 (PWH) is the main obstacle to an HIV-1 cure. The reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. Here, we review the recent progress in the characterization of persistent HIV-1 transcription during ART. RECENT FINDINGS: Evidence from several studies indicates that, although cell-associated unspliced (US) HIV-1 RNA is abundantly expressed in ART-treated PWH, intact full-length US transcripts are rare and most US RNA is derived from defective proviruses. The transcription- and translation-competent defective proviruses, previously considered irrelevant, are increasingly being linked to residual HIV-1 pathogenesis under suppressive ART. Recent data suggest a continuous crosstalk between the residual HIV-1 activity under ART and the immune system. Persistent HIV-1 transcription on ART, despite being mostly derived from defective proviruses, predicts viral rebound upon therapy interruption, suggesting its role as an indicator of the strength of the host antiviral immune response that is shaping the viral rebound. SUMMARY: In light of the recent findings, the significance of persistent HIV-1 transcription during ART for the long-term health of PWH and the cure research should be reassessed.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Antirretrovirais/uso terapêutico , Replicação Viral , Provírus/genética , RNA Viral/genética , Linfócitos T CD4-Positivos , Carga Viral
11.
Proc Natl Acad Sci U S A ; 121(13): e2309925121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502701

RESUMO

Human retroviruses are derived from simian ones through cross-species transmission. These retroviruses are associated with little pathogenicity in their natural hosts, but in humans, HIV causes AIDS, and human T-cell leukemia virus type 1 (HTLV-1) induces adult T-cell leukemia-lymphoma (ATL). We analyzed the proviral sequences of HTLV-1, HTLV-2, and simian T-cell leukemia virus type 1 (STLV-1) from Japanese macaques (Macaca fuscata) and found that APOBEC3G (A3G) frequently generates G-to-A mutations in the HTLV-1 provirus, whereas such mutations are rare in the HTLV-2 and STLV-1 proviruses. Therefore, we investigated the mechanism of how HTLV-2 is resistant to human A3G (hA3G). HTLV-1, HTLV-2, and STLV-1 encode the so-called antisense proteins, HTLV-1 bZIP factor (HBZ), Antisense protein of HTLV-2 (APH-2), and STLV-1 bZIP factor (SBZ), respectively. APH-2 efficiently inhibits the deaminase activity of both hA3G and simian A3G (sA3G). HBZ and SBZ strongly suppress sA3G activity but only weakly inhibit hA3G, suggesting that HTLV-1 is incompletely adapted to humans. Unexpectedly, hA3G augments the activation of the transforming growth factor (TGF)-ß/Smad pathway by HBZ, and this activation is associated with ATL cell proliferation by up-regulating BATF3/IRF4 and MYC. In contrast, the combination of APH-2 and hA3G, or the combination of SBZ and sA3G, does not enhance the TGF-ß/Smad pathway. Thus, HTLV-1 is vulnerable to hA3G but utilizes it to promote the proliferation of infected cells via the activation of the TGF-ß/Smad pathway. Antisense factors in each virus, differently adapted to control host cellular functions through A3G, seem to dictate the pathogenesis.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Humanos , Linhagem Celular , Virulência , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Leucemia-Linfoma de Células T do Adulto/genética , Provírus/genética , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Desaminase APOBEC-3G/genética
12.
Proc Natl Acad Sci U S A ; 121(14): e2402541121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527209
13.
J Clin Invest ; 134(8)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376918

RESUMO

BACKGROUNDPersistent controllers (PCs) maintain antiretroviral-free HIV-1 control indefinitely over time, while transient controllers (TCs) eventually lose virological control. It is essential to characterize the quality of the HIV reservoir in terms of these phenotypes in order to identify the factors that lead to HIV progression and to open new avenues toward an HIV cure.METHODSThe characterization of HIV-1 reservoir from peripheral blood mononuclear cells was performed using next-generation sequencing techniques, such as full-length individual and matched integration site proviral sequencing (FLIP-Seq; MIP-Seq).RESULTSPCs and TCs, before losing virological control, presented significantly lower total, intact, and defective proviruses compared with those of participants on antiretroviral therapy (ART). No differences were found in total and defective proviruses between PCs and TCs. However, intact provirus levels were lower in PCs compared with TCs; indeed the intact/defective HIV-DNA ratio was significantly higher in TCs. Clonally expanded intact proviruses were found only in PCs and located in centromeric satellite DNA or zinc-finger genes, both associated with heterochromatin features. In contrast, sampled intact proviruses were located in permissive genic euchromatic positions in TCs.CONCLUSIONSThese results suggest the need for, and can give guidance to, the design of future research to identify a distinct proviral landscape that may be associated with the persistent control of HIV-1 without ART.FUNDINGInstituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127 and PI22/01796), Gilead Fellowships (GLD22/00147). NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHE and the Bill and Melinda Gates Foundation.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Leucócitos Mononucleares , Provírus/genética , Infecções por HIV/tratamento farmacológico , Antirretrovirais/uso terapêutico
14.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329130

RESUMO

BACKGROUNDIdentifying factors that predict the timing of HIV rebound after treatment interruption will be crucial for designing and evaluating interventions for HIV remission.METHODSWe performed a broad evaluation of viral and immune factors that predict viral rebound (AIDS Clinical Trials Group A5345). Participants initiated antiretroviral therapy (ART) during chronic (N = 33) or early (N = 12) HIV infection with ≥ 2 years of suppressive ART and restarted ART if they had 2 viral loads ≥ 1,000 copies/mL after treatment interruption.RESULTSCompared with chronic-treated participants, early-treated individuals had smaller and fewer transcriptionally active HIV reservoirs. A higher percentage of HIV Gag-specific CD8+ T cell cytotoxic response was associated with lower intact proviral DNA. Predictors of HIV rebound timing differed between early- versus chronic-treated participants, as the strongest reservoir predictor of time to HIV rebound was level of residual viremia in early-treated participants and intact DNA level in chronic-treated individuals. We also identified distinct sets of pre-treatment interruption viral, immune, and inflammatory markers that differentiated participants who had rapid versus slow rebound.CONCLUSIONThe results provide an in-depth overview of the complex interplay of viral, immunologic, and inflammatory predictors of viral rebound and demonstrate that the timing of ART initiation modifies the features of rapid and slow viral rebound.TRIAL REGISTRATIONClinicalTrials.gov NCT03001128FUNDINGNIH National Institute of Allergy and Infectious Diseases, Merck.


Assuntos
Infecções por HIV , Humanos , Provírus/genética , Linfócitos T CD8-Positivos , Carga Viral , DNA
15.
Vet Microbiol ; 291: 110012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387235

RESUMO

The ubiquitin-binding enzyme E2J1 is located on the endoplasmic reticulum membrane. It plays a role in transport throughout the process of ubiquitination. In mammals, UBE2J1 can promote RNA virus replication. However, the biological function of chicken UBE2J1 is unclear. In this study, chicken UBE2J1 was cloned for the first time, and UBE2J1 overexpression and shRNA knockdown plasmids were constructed. In chicken embryo fibroblasts, overexpression of UBE2J1 promoted the replication of subtype A avian leukosis virus, while knockdown of UBE2J1 inhibited the replication of ALV-A virus. In addition, we divided virus replication into virus adsorption and invasion into DF-1 cells, synthesis of proviral DNA, and release of viral particles. UBE2J1 promoted the replication of ALV-A virus by promoting the synthesis of proviral DNA. This result was caused by UBE2J1 inhibiting the production of interferon by inhibiting the STAT3/IRF1 pathway. We mutated ser at position 184 of UBE2J1 to Gly and found that this site plays a role as the phosphorylation site of UBE2J1. We confirmed that UBE2J1 promotes ALV-A replication in chicken embryo fibroblasts by inhibiting the STAT3/IRF1 pathway. This study provides new ideas and insights into ubiquitin-related proteins and antiviral immunity.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Animais , Embrião de Galinha , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/metabolismo , Galinhas , Mamíferos , Provírus , Transdução de Sinais , Ubiquitinas , Fator de Transcrição STAT3/metabolismo , Fatores Reguladores de Interferon/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
16.
PLoS Pathog ; 20(2): e1011974, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422171

RESUMO

People with HIV-1 (PWH) on antiretroviral therapy (ART) can maintain undetectable virus levels, but a small pool of infected cells persists. This pool is largely comprised of defective proviruses that may produce HIV-1 proteins but are incapable of making infectious virus, with only a fraction (~10%) of these cells harboring intact viral genomes, some of which produce infectious virus following ex vivo stimulation (i.e. inducible intact proviruses). A majority of the inducible proviruses that persist on ART are formed near the time of therapy initiation. Here we compared proviral DNA (assessed here as 3' half genomes amplified from total cellular DNA) and inducible replication competent viruses in the pool of infected cells that persists during ART to determine if the original infection of these cells occurred at comparable times prior to therapy initiation. Overall, the average percent of proviruses that formed late (i.e. around the time of ART initiation, 60%) did not differ from the average percent of replication competent inducible viruses that formed late (69%), and this was also true for proviral DNA that was hypermutated (57%). Further, there was no evidence that entry into the long-lived infected cell pool was impeded by the ability to use the CXCR4 coreceptor, nor was the formation of long-lived infected cells enhanced during primary infection, when viral loads are exceptionally high. We observed that infection of cells that transitioned to be long-lived was enhanced among people with a lower nadir CD4+ T cell count. Together these data suggest that the timing of infection of cells that become long-lived is impacted more by biological processes associated with immunodeficiency before ART than the replication competency and/or cellular tropism of the infecting virus or the intactness of the provirus. Further research is needed to determine the mechanistic link between immunodeficiency and the timing of infected cells transitioning to the long-lived pool, particularly whether this is due to differences in infected cell clearance, turnover rates and/or homeostatic proliferation before and after ART.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus/genética , HIV-1/genética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Linfócitos T CD4-Positivos , DNA Viral/genética , DNA Viral/metabolismo , Carga Viral , Tropismo
17.
Arch Virol ; 169(3): 47, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366081

RESUMO

Bovine leukemia virus (BLV) is a member of the family Retroviridae that causes enzootic bovine leukemia (EBL). However, the association between BLV infection and EBL development remains unclear. In this study, we identified a BLV/SMAD3 chimeric provirus within CC2D2A intron 30 in monoclonal expanded malignant cells from a cow with EBL. The chimeric provirus harbored a spliced SMAD3 sequence composed of exons 3-9, encoding the short isoform protein, and the BLV-SMAD3 chimeric transcript was detectable in cattle with EBL. This is the first report of a BLV chimeric provirus that might be involved in EBL tumorigenesis.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Feminino , Bovinos , Provírus/genética , Vírus da Leucemia Bovina/genética
18.
J Virol ; 98(3): e0179823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376258

RESUMO

Although antiretroviral therapy (ART) is effective at suppressing HIV replication, a viral reservoir persists that can reseed infection if ART is interrupted. Curing HIV will require elimination or containment of this reservoir, but the size of the HIV reservoir is highly variable between individuals. To evaluate the size of the HIV reservoir, several assays have been developed, including PCR-based assays for viral DNA, the intact proviral DNA assay, and the quantitative viral outgrowth assay (QVOA). QVOA is the gold standard assay for measuring inducible replication-competent proviruses, but this assay is technically challenging and time-consuming. To begin progress toward a more rapid and less laborious tool for quantifying cells infected with replication-competent HIV, we developed the Microwell Outgrowth Assay, in which infected CD4 T cells are co-cultured with an HIV-detecting reporter cell line in a polydimethylsiloxane (PDMS)/polystyrene array of nanoliter-sized wells. Transmission of HIV from infected cells to the reporter cell line induces fluorescent reporter protein expression that is detected by automated scanning across the array. Using this approach, we were able to detect HIV-infected cells from ART-naïve people with HIV (PWH) and from PWH on ART with large reservoirs. Furthermore, we demonstrate that infected cells can be recovered from individual rafts and used to analyze the diversity of viral sequences. Although additional development and optimization will be required for quantifying the reservoir in PWH with small latent reservoirs, this assay may be a useful prototype for microwell assays of infected cells.IMPORTANCEMeasuring the size of the HIV reservoir in people with HIV (PWH) will be important for determining the impact of HIV cure strategies. However, measuring this reservoir is challenging. We report a new method for quantifying HIV-infected cells that involves culturing cells from PWH in an array of microwells with a cell line that detects HIV infection. We show that this approach can detect rare HIV-infected cells and derive detailed virus sequence information for each infected cell.


Assuntos
Infecções por HIV , Virologia , Humanos , Linfócitos T CD4-Positivos , Linhagem Celular , DNA Viral , Infecções por HIV/virologia , Provírus/genética , Carga Viral , Latência Viral , Virologia/métodos
19.
Cell ; 187(5): 1238-1254.e14, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38367616

RESUMO

CD4+ T cells with latent HIV-1 infection persist despite treatment with antiretroviral agents and represent the main barrier to a cure of HIV-1 infection. Pharmacological disruption of viral latency may expose HIV-1-infected cells to host immune activity, but the clinical efficacy of latency-reversing agents for reducing HIV-1 persistence remains to be proven. Here, we show in a randomized-controlled human clinical trial that the histone deacetylase inhibitor panobinostat, when administered in combination with pegylated interferon-α2a, induces a structural transformation of the HIV-1 reservoir cell pool, characterized by a disproportionate overrepresentation of HIV-1 proviruses integrated in ZNF genes and in chromatin regions with reduced H3K27ac marks, the molecular target sites for panobinostat. By contrast, proviruses near H3K27ac marks were actively selected against, likely due to increased susceptibility to panobinostat. These data suggest that latency-reversing treatment can increase the immunological vulnerability of HIV-1 reservoir cells and accelerate the selection of epigenetically privileged HIV-1 proviruses.


Assuntos
Infecções por HIV , HIV-1 , Inibidores de Histona Desacetilases , Interferon-alfa , Panobinostat , Provírus , Humanos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Panobinostat/uso terapêutico , Provírus/efeitos dos fármacos , Latência Viral , Inibidores de Histona Desacetilases/uso terapêutico , Interferon-alfa/uso terapêutico
20.
Viruses ; 16(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38400024

RESUMO

At every integrated HIV-1 genome, there is a transcriptional cycle that ultimately shapes proviral fate [...].


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , HIV-1/genética , Latência Viral/genética , Provírus/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...